MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

I B.Tech– I SEM (MR 20 - 2020-21 Admitted Students) I Mid Examination Subjective Question Bank

Subject: Engineering Chemistry Branch: CSE, (AI &ML, IoT, CS, DS), IT

Subject Code: AOBI7

Instructions:

1. All the questions carry equal marks

2. Answer all the questions

Q.No.	Question	Bloom's Taxonomy Level	СО
	<u>Module-I</u>		
1.	With the help of neat diagram describe the softening of water by Ion exchange method and give its advantages and disadvantages	Understanding	1
2.	Suggest and explain suitable methods to avoid boiler troubles inside the boiler	Applying	1
3.	Write a brief account on i) Scale &Sludge formation ii) Caustic embrittlement	Understanding	1
4.	Explain the softening of water by using Cold Lime soda method with a neat labelled diagram.	Understanding	1
5.	Calculate the carbonate and non-carbonate hardness of water sample containing the following dissolved salts per litre. Mg(HCO ₃) ₂ =14.6mgs, Ca(HCO ₃) ₂ =16.2 mgs, CaSO ₄ =13.6 mgs, MgSO ₄ =12 mgs,MgCl ₂ =9.5 mgs.	Applying	1
6	Suggest and Explain suitable method for desalination of brackish water with the help of neat diagram and give its advantages.	Applying	1

	Module II					
1.	Draw a neat labelled molecular orbital energy level diagram of F_2 . Find out its bond order, bond nature and magnetic properties.	Understanding	2			
2.	Give a brief account on linear combination of atomic orbitals (LCAO) and give its significance.	Understanding	2			
3.	Analyse the crystal field splitting of d-orbitals of octahedral complexes strong field and weak field ligands with suitable examples.	Analyzing	2			
4.	Make use of Crystal Field Theory, explain splitting of d-orbitals of tetrahedral complex by taking [Ni (CO) ₄] as example	Applying	2			
5.	Write the salient features of crystal field theory	Understanding	2			
6.	Distinguish p-doping and n-doping of conductance of solids with suitable examples.	Analyzing	2			
	Module III					
1.	What are fuel cells? Explain the construction and working of H_2 – O_2 fuel cell and give its applications.	Understanding	3			
2.	By making use of Glass electrode how do you determine the pH of a solution?	Applying	3			
3.	Describe the construction and working of Lead-acid battery along with reactions involved in during charging and discharging.	Understanding	3			

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

I B.Tech– I SEM (MR20-2020-21 Admitted Students) I mid Examination Objective Question Bank

Subject: Engineering Chemistry Branch / Specialization: CSE (AI&ML, IoT, CS, DT), IT Subject code: AOB17

1.	The purification of brackis A. Caustic embrittlement	h water by reverse osr B. Super filtration	nosis is also called a C. Lime-soda pro		[n exchange]
2.	One part of CaCO ₃ equival A. Degree Clarke	ent hardness per 10 ⁵ p B. ppm	arts of water is also C. Degree French		g/L]
3.	Boiler corrosion caused by A. Corrosion	using highly alkaline v B. Boiler corrosion	vater in boiler is call C. Caustic embrit		[osion]
4.	Caustic embrittlement car A. Sodium phosphate	n be avoided by using. B. hydrogen	C. ammonium hy	droxide D. So	[dium sulph] ate
5.	Caustic embrittlement is a A. boiler corrosion	type of. B. conditioning	C. Scale formation	n D. Slu	[udge forma] tion
6.	The soft loose and slimy p A. scale	recipitate formed with B. sludge	in the boiler is calle C. embrittlement		[agulation]
7.	Sodium meta aluminate u	sed in internal treatme	ent of boiler water p	roduces floccu	lent precipi	itates of
	A. Mg(OH) ₂ & Al(OH) ₃	B. NaOH & Al(OH) ₃	C. Ca(OH) ₂ & AI(OF	I) ₃ D. Ca(Ol	լ Ⅎ)₂& Mg(OͰ] H) ₂
8.	In low pressure boilers car A. calcium bicarbonate	bonate conditioning o B. calcium sulphate	f boiler feed water o C. calcium chloric		emove [alcium nitra] ite
9.	The Alkalinity of water is of A. OH ⁻ & CO ₃ ⁻² ions	lue to. B. Cl ⁻ & SO ₄ -2 ions	C. NO ₃ -& Br ⁻ ions	D. Non	le []
10	. The Alkalinity of water sar	nple is a measure of its	s capacity to neutral	ize	[]
	A. acid	B. base	C. buffer	D. no	one	
11	. Temporary hardness in wa A. filtration	ater is removed by. B. sedimentation	C. Boiling	D. coagulation	[n]
12	Blow-down operation cau A. scales	ses the removal of B. sludge	C. acidity	D. sodium chlo	[oride]
13	. The exhausted anion exch A. Dil. HCl	ange resin can be rege B. Dil. NaOH	nerated by using. C. Concentration H	l ₂ SO ₄ D. Na	[nCl]
14	. Permanent hardness of wa	ater cannot be remove	d by		[]

15. Hard water is unfit for use in boilers for generating steam because 1 A. Its boiling point is higher B. Steam is generated at high temperature C. Water decomposes into O₂ and H₂ D. It produces scales inside the boiler 16. Estimation of hardness of water by EDTA method is used to determine] A. Total hardness B. Temporary hardness only C. Permanent hardness only D. All the above 17. Hard water can be softened by passing it through. 1 A. Lime stone B. Sodium hexa Meta phosphate C. Ion-exchange resin D. Sodium silicate 18. Calgon is a trade name given to. 1 A. Sodium silicate B. Sodium hexa Meta phosphate D. Calcium phosphate. C. Sodium Metaphosphate 19. Brackish water mostly contains dissolved 1 A. Calcium salts B. Magnesium salts C. Turbidity D. Sodium chloride 20. Calgon formula is 1 A. $Na_2[Na_4(PO_3)_6]$ B. $Na[Na_4(PO_3)_6]$ C. $Mgso_4.7H_2O$ D. $Na_4[Na_3(PO_3)_6]$ 21. Buffer used in the estimation of hardness by EDTA Method is 1 A. NaCl, NaOH B. CaCl₂,Ca(OH)₂ C. NH₄Cl, NH₄OH D. Mgcl₂, Mg(OH)₂ 22. The external treatment of boiler feed water done by 1 A. Lime-soda process B. Sodium sulphate treatment C. Calgon process D. Sodium aluminate treatment. 23. The process of wet-steam formation is called.] A. Foaming B. Priming C. Corrosion D. Caustic embrittlement 24. Mechanical steam purifiers avoid. 1 A. Corrosion B. Priming C. Scale formation D. Sludge formation 25. Castor oil is a 1 A. Anti-skinning agent B. Anti-foaming agent C. Anti-ageing agent D. Anti-corrosive agent] 26. Liquid chlorine is most effective. A. Disinfectant B. CoagulantC. Flocculent D. Sterilizing agent 27. Disinfection by ozone is due to liberation of.] C. Molecular oxygen B. Nascent oxygen D.None A. Oxygen 28. The formula of chloramine is] A. CINH₂ B. NHCl₂ C. NCI₃ D. NH₂Cl₂ 29. Phosphate conditioning of boiler feed is carried out by. 1 A. Na₃PO₄ C. $Mg(PO_3)_2$ B. $Ca(PO_4)_2$ D. H₃PO₄

C. Boiling

D. By ion-exchange process.

A. Lime soda B. By zeolite process

30. Hardness of water is caused by A. CaCl ₂ B. NaCl		C. Na ₂ CO ₃	D. K ₂ S	[]
31. Hard water contains. A. Na⊕ B. Mg ²⁻	+	C. Ca ²⁺ D.Both (b) and (c)]]
32. Permanent hardness of water is A. HCO ₃ B. CO ₃	s due to.	C. CI ⁻	D. Na⊕	[]
33. Tannins and agar-agar are used A. phosphate conditioning C. colloidal conditioning	for B. carbonate condi D. calgon conditio	o .		[]
34. The demineralization of water i A. Zeolite process B. Ion-ex	s called xchange process	C. Lime–soda process	D. None	[]
35. Which is not the unit of hardne	ss of water?	C. Dogroo Clark	D ma/l	[]
A. ppm B. epm 36. The relation between mg/L and	• •	C. Degree Clark	D. mg/L	[]
A. 1 mg/L = 1 ppm B. 10 mg/	L = 1 ppm	C. 1 mg/L = 10 ppm	D. 1 mg		
37. In EDTA titration, the colour of A. Red B. BlueC.	•	D. No change		[]
38. Caustic embrittlement is a type A. Boiler corrosion B. conditio		mation D. sludge form	ation	[]
39. The Hardness of water is 10 ppi A. 0.0007° Cl B. 0.07° C	•	ed in degree Clark as C. 0.7° Cl D. 7.0° Cl		[]
40. Purest form of natural water is A. Sea water B. River water	C. Rain water	D. Lake water		[]
41. Which of the following salt caus	se least hardness to	water when converted ir	nto CaCO₃ e	quivale	nts?
A.10 mg of CaCO ₃ B. 19 r	ng of CaSO ₄	C. 10 mg of Mgl ₂	l). 10 mg of] CaCl ₂	
42. The full name of EDTA.A. di amine tetra acetic acidC. Ethylene amine tetra acetic a		i tetra amine acetic acid etra acetic acid		[]
43. A water sample found to posses	s 16.2 mg/l of Ca(HC	CO ₃) ₂ . Its hardness in tern	ns of CaCO ₃	equival	ents
A. 100 ppm B. 10 ppm C. 1	6.2 ppm D.1000 p	pm	[]	
44. Water can be sterilized by using A. Cl ₂ B. CCl ₄)	C. CaCO ₃	D. Na] HC]
45. Brackish water can be purified I	oy using			[]

	A. Lime-soda process	B. Permutit proce	ess	C. Filtratio	on	D. Reverse os	smosis m	nethod
46	Best method of remov A. lon exchange	ring hardness of wa B. Permutit	ater is C. Lime–se	oda	D.Boiling		[]
47	Hardness of water is e A. MgCO ₃ B	•	of equivale a ₂ CO ₃	ents of D. K ₂ CO ₃	3		[]
48	Caustic embrittlement A. NaCl B. Na		he presenc IgCO₃	e of D. KNO ₃			[]
49	Priming and foaming in A. Wet steam	n boilers produce B. Dry steam		C. Soft stea	am	D. Har	[rd steam]
50	The exhausted cation (A. Dil. NaOH	exchange resin car 3. Dil. HCl	J	erated by tr C. Distilled	0	n D. Dil.	[NaCl]
51.	The filling of molecula A. Aufbau Principle I				rule	D. The	[e above]
52	Molecular orbital theo A. Pauling B.P	ory was developed auling and Slater	, ,	⁄Iulliken		D. Thomson	[]
53	The interaction betwe A. Attractive B	en pair of orbitals . Repulsive			no interact	ion D. Nor	[ne of the] above
54.	54. According to Molecular Orbital Theory, the shape and size of a molecular orbital depends upon[] A. Shape and size of the combining atomic orbitals C. Orientation of the combining atomic orbitals D. All the above							
55.	Antibonding molecular A. Constructive interact C. the overlap of the a	ction of atomic orb	itals.			nteraction of a	[atomic o] orbitals
56	The bond order of a m A. The difference betw B.Total number of elec C. Twice the difference D. Half the difference	veen the number of etrons in bonding a e between the nui	of electrons and antibor mber of ele	nding orbita ectrons in b	als onding and	l antibonding	electron] s
57	The difference in ener orbitals is called A. Bond energy	gy between the bo B. Activation ene	J	ecular orbit Stabilization		and the comb D. Destabiliz	[]
58.	If Nx is the number of orbitals, then the mo	•	be stable	•	is the nur	nber of antib D. Nx≤Ny	onding []
59	Bond Order of O ₂ , F ₂ , N	N ₂ respectively are					[]

	A. +1,+2,+3	B. +2,+3,+1	C. +2,+1,+3	D. +3, +2, +1			
60.	Which of the following	ng molecule does not e	exist due to its zero bo	nd order?	[]	
	A. H ₂ ⁺	B. He ₂ ⁺	C. He ₂	D. H ₂ ⁻			
61.	What is the bond ord	ler in Ω₂⁺·			Г]	
011	A. 3.5	B. 2.0	C. 1.5	D. 2.5	L	J	
۲٦	The hand order in N	malagula is			г	1	
02.	The bond order in N_2 A. 1	B. 2	C. 3	D.4	[]	
63.	The bond order of He A. 1		C. ½	D. 1⁄4	[]	
	Λ. Ι	. Z	5. 72	D. 74			
64.		H (1s ¹) and F (2p _x ¹) give		al and the second transfer of the L	[]	
	D.None of the mention	B. Antibonding orbital oned	C. Both bonding an	id antibonding orbital			
65.	Which of the following	ng order of energies of	molecular orbitals of	N₂ is correct?	ſ]	
	A. $(\pi 2py) < (\sigma 2pz) <$	$(\pi *2px) \approx (\pi *2py)$	B. (π2py) > (σ2pz	$) > (\pi *2px) \approx (\pi *2py)$		-	
	C. $(\pi 2py) < (\sigma 2pz) >$	$(\pi *2px) \approx (\pi *2py)$	D. (π2py) > (σ2pz) < (π *2px) ≈ (π *2py)		
66.	Which of the following	ng statement is not cor	rect from the view po	int of molecular orbita	l theory	/? 1	
	A. Be ₂ is not a stable	molecule.			L	J	
	B. He ₂ is not stable b	ut He2 ⁺ is expected to 6					
	C. Bond strength of N second period.	I_2 is maximum amongs	t the homonuclear dia	atomic molecules belo	nging to	the	
		rgies of molecular orbi	tals in N ₂ molecule is o	σ2s < σ * 2s < σ2p _z < (π2	$2p_x = \pi 2$	p _y)< (π	
	$^*2p_x = \pi * 2p_y) < \sigma * 2$	p_z					
67.	Which one of the foll	owing is paramagnetic	:?		[]	
	A. N ₂	B. NO	C. CO	D.	F_2		
68	Which of the following	molecule is paramagnet	ic		ſ]	
00.	A. Chlorine	B. Nitrogen	C. Oxygen	D. Hydroge	n	,	
60	The paramagnetic r	nature of ovvigen mol	oculo is host ovalain	ad an the basis of			
07.	69. The paramagnetic nature of oxygen molecule is best explained on the basis of A. Valence bond theory B. Resonance C. Molecular orbital theory D. Hybridization						
70.	70. According to molecular orbital theory, the Paramagnetism of O ₂ molecule is due to presence of						
	-	-	-	,	[]	
		s in the bonding σ mol s in the antibonding σ					
	· · · · · · · · · · · · · · · · · · ·	in the bonding π mole					
	•	s in the antibonding π					
71	Which of the follow	ving molecule is not p	paramagnetic		ſ	1	
, 1	A. O_2	B. O ₂ ⁺	$C. O_2^{-2}$	D. O ₂ ⁻	L	,	

72.	In which of the foll	~ .				l]
			C. N_2^- , O_2	D. O_2^+ ,	N_2	_	-
73.	The bond order is r			2.11]
	$A. N_2^+$	B. O_2^{+2}		$C.N_2$		D. NO ⁺	
74.	From elementary r positive nitrogen m A. $\sigma(1s)^2\sigma*(1s)^2\sigma(2$ C. $\sigma(1s)^2\sigma*(1s)^2\sigma(2$	nolecular ion N_2^+ as $s)^2 \sigma * (2s)^2 \pi (2p)^4 \sigma (2p)^4$	_	B. $\sigma(1s)^2\sigma*(1$	onfiguration o s) ² σ(2s) ² σ*(2s s) ² σ(2s) ² σ*(2s	[s) ² σ(2p) ¹ 1] π(2p) ³
75.	The paramagnetic in	property of the oxy	gen molecule du	ue to the presence	e of unpaired	electron: [s present]
	A. $(\sigma 2px)^1$ and $(\sigma * 2px)^2$	px) ¹ B. (σ2px) ¹ an	d (π2py) ¹ C. ($(\pi*2py)^1$ and $(\pi*2)$	pz) ¹ D. (π*2	py) ¹ and ((π2py) ¹
76.	The total number of A. Effectiveatomicr	-	tached to centra lination number			[idation n] umber
77.	Which response gives atom in [Co (NH ₃) ₂ (A. C.N. = 2; O.N. =					[]
78.	Which one of the f	ollowing is a monod B. EDTA	dentateligand? C. C ₂ O ₄ -2	D	. H ₂ NCH ₂ CH ₂ N	[JH ₂]
79.	Consider the coord A. [Pt(CN) ₄] ²⁻	lination compound, B. Pt	$Na_2[Pt(CN)_4]$. The C. Pt^{2+}	ne Lewis acidis D. CN	J ⁻	[]
80.	In which one of the	e following species of	does the transiti	on metal ion have	e d³ electronic	configui	ration?
	A. $[Cr(NH_3)_6]^{3+}$	B. [Co(OH ₂) ₆] ²⁴	C. [Co	F ₆] ³⁻ D. [Fe(CN) ₆] ³⁻	L]
81.	Among the following A. $[Cr(H_2O)_6]^{3+}$	ng ions which one h B. $[Fe(H_2O)_6]^{2+}$			D. [Zn(H₂([O) ₆] ²⁺]
82.	The complex [Co(N					[]
	A.PbCl ₂	B.AgNO ₃	C. KI		D.None		
83.	$[Co(NH_3)_6]^{3+}$ ion is:					[]
	A. Paramagnetic	B. Diamagnetic	C. F	erro magneticD.N	one		
84.	Whichof thefollowi	ngismostlikelystructi	ureofCrCl ₃ , 6H ₂ C	of 1chlorineofthec	ompound is p	recipitate	ed by
	adding AgNO ₃ to it	s aqueous solution:				[]
	A.CrCl ₃ .6H ₂ O	B. [Cr(H ₂ O) ₃ Cl ₃](H	H ₂ O) ₃ C.[CrCl	₂ (H ₂ O) ₄]CI.2H ₂ O	D. [CrCl ₂ (H	₂ O) ₅]Cl ₂	.H ₂ O
85.	The co-ordination r	number and oxidatio	on numberof X i	n [X(SO ₄)(NH ₃) ₄]C	l is :	[]

	A. 10and3	B. 2and6	C. 6and3	D. 6 and4		
	A. [CoF ₆] ³⁻	B. [Co(H ₂ O) ₆] ³⁺	olves d^2sp^3 hybridization : C. $[Fe(CN)_6]^{3-}$	D. [Fe(H ₂ O)	[) ₆] ³⁺]
	A. K ₄ [Fe(CN) ₆] A ligand can also be	B. K ₃ [Fe(CN) ₆] e regardedas	umberofametaliszero , is C. [Ni(CO) ₄]	D. [Pt(NH ₃)	[]
	A. Lewisacid	B. Bronstedbase	C. Lewisbase	D. Bronsted	lacid	
89.	respectivelyare A. Octahedral, tetra	es of the complexes fo ahedral andsquarepland etrahedralandOctahedr		Ni ²⁺ with CI ⁻ ,CN ⁻ and ral, square planer and ral, square planer and	[loctahe	
90.	Which of the follow	ving facts about the con	nplex [Cr (NH ₃) ₆]Cl ₃ is wror	ng?	[]
	B. The complex ispa C. The complex is a			ре		
91.	The magnetic mom A. 1.82BM	nent (spin only) of[NiCl ₄] B. 5.46BM	J ²⁻ is C. 2.82BM	D. 1.41BN] M]
92.	Amongtheligands N	NH ₃ , en, CN ⁻ and CO the	e correct order of their inc	reasing ieldstrengthis	[]	
	A. CO <nh<sub>3 <en<cl< td=""><td>N B. NH₃<en< cn<="" td=""><td>-<co c.="" cn-<nh<sub="">3<co< td=""><td><en d.en<cn<sup="">-<n< td=""><td>IH₃<cc< td=""><td>)</td></cc<></td></n<></en></td></co<></co></td></en<></td></en<cl<></nh<sub>	N B. NH ₃ <en< cn<="" td=""><td>-<co c.="" cn-<nh<sub="">3<co< td=""><td><en d.en<cn<sup="">-<n< td=""><td>IH₃<cc< td=""><td>)</td></cc<></td></n<></en></td></co<></co></td></en<>	- <co c.="" cn-<nh<sub="">3<co< td=""><td><en d.en<cn<sup="">-<n< td=""><td>IH₃<cc< td=""><td>)</td></cc<></td></n<></en></td></co<></co>	<en d.en<cn<sup="">-<n< td=""><td>IH₃<cc< td=""><td>)</td></cc<></td></n<></en>	IH ₃ <cc< td=""><td>)</td></cc<>)
93.	Crystal field splittir	ng thenumber of unpa	ired electrons calculated ir	n [Co(NH ₃) ₆] ³⁺ and [C	o(F ₆)] ³	³ -are
	A. 4and4	B. 0and2	C. 2and4	D. 0 and4	[]
94.	The coordination n		complex[Co(en) ₂ Br ₂]Cl ₂		[]
	A. 2	B. 4	C. 5	D. 6		
95.	•	eofhexadentateligand? . Dimethylglyoxime C	C.Aminodiacetateion D. E	thylene diammine teti	[ra aceta] ateion
96.	_	rons into t _{2g} & eg set of o & eg³C. t2g²& eg⁴D. t2gʻ	· ·		[]
97.	Pickoutfromthefollo A.K ₂ [PtCl ₆]	owingcomplexcompour B. [Co(NH ₃) ₃ (NO ₂) ₃]	nds, apoorelectrolyticcond C. K ₄ [Fe(CN) ₆]	uctorinsolution D. [Cu(NH ₃) ₄]S	[O ₄]
98.	The type of hybridi	zation involved in the m	netal ion of [Ni (H ₂ O) ₆] ²⁺ co	omplex is?]]

A. d ³ sp ²	B. sp ³ d ²	C. sp ³	D. dsp ²			
99. Consider the coordination compound, K ₂ [Cu (CN) 4]. A coordinate covalent bond exists between						
A. K ⁺ andCN ⁻ C. K ⁺ and[Cu(CN	_	B. Cu ²⁺ andCN ⁻ (Crys	tal Field Theory) Stro	ong field ligands	1	
B. Usually produ C. Usually produ	ice low spin complex	xes and small crystal f es and small crystal fi es and high crystal fie exes and high	eld splitting]	1	
101. Which of the fo A. Molten NaCl	ollowing does not cor B. Solution	nduct electricity? n of NaCl in H ₂ O	C. NaCl crystals	[D.None]	
102. The unit of spe A. Ohm Cm ⁻¹	ecific conductance is B. Ohm ⁻¹ c	m	C. Ohm Cm	[D. Ohm ⁻¹ Cr] n ⁻¹	
103. The relationsh A. λ_{eq} = C x 100/	•	onductivity and equiv / 1000 C. λ _{eq} =	valent equivalent con = C x 1000 /K	ductance is [D. λ _{eq} = K x 1] 000/C	
104. Which of the fo	ollowing is a weak ele B. NaOH	ectrolyte?	C. HCI	[D. NaCl]	
	uivalent conductivity B. Ohm ⁻ cm ⁻²		m ⁻² cm ² eq ⁻¹	[D. Ohm ⁻² cm] n ⁻² eq ⁻¹	
106. In the standard A. a phase boun		ic cell, the double ver ectrode C. a	tical line " " represe wire (metal) connec] t bridge	
107. Which of the form A. $Fe^{+3} + e^{-} = 1$	ollowing is an oxidation of the second of th	on? ² + 2e ⁻ C. Fe ⁺³ + 3	Be˙ = Fe D. Fe	[e ⁺² + 2e ⁻ = Fe]	
A. From the and B. From the and C. From the cath	de to the cathode the de to the cathode the node to the anode the	s travel in which direct rough the external cir rough the porous cup rough the external cir rough the porous cup	cuit cuit	[]	
109. The reciprocal A. Equivalent co	of the resistance is canductance B	alled 3. Specific conductanc	e C. Conductar	[nce D. Nor] ne	
110. Primary batter A. Which can be	•	B. This cannot b	ne recharged t be reconditioned by	v replacing cher] nical	
	battery is such a bat		t 20 Food Hallottod by]	

A. Which cannot be rechargedC. In which cell reaction irreversible	B. This can be recharged D. This is charged by primary cells	3
112. An example of secondary battery cell is A. Nickle-Cadmium cell B. Daniel cell	C. Lechlanche cell	[] D. Bunsen cell
113. A storage cell is a device that can operate A. Both as voltage cell & electrical cell B. As	voltaic cell C. As electrical cell	[] D.None
114. Calomel electrode potential is dependent of A. KCl concentration B. Hg ₂ -Cl ₂	C. Temperature	[] D. None
	s. Chemical energy into Electrical End o. Chemical energy into heat energy	[] ergy
116. Daniel cell is a combination of standard electr A. Cu & Ag B. Zn & Cd	rodes of C. Zn & Cu	[] D. Cu & Cd
 117. When storage cell is operating as voltaic cell in A. Charging 118. A fuel cell converts A. Chemical energy of fuels directly to electricity C. Chemical energy of fuels directly to pressure 	C. Neutral ty B. Chemical energy of fuels dire	[] D. None [] ctly to heat
119. A Device in which the chemical energy is conv A. Electro chemical cell B. Electrolytic cel		[]
120. Several electrochemical cells connected in sercurrent at a constant voltage is called.A. BatteryB. Voltaic cell		direct electric [] Metal conductor
121. In lead-acid storage cell during discharging op A. Increases B. Decreases		[] None
122. Calomel electrode is constructed using a solur A. Saturated KCl B. Saturated CaCl ₂		[] Saturated NaCl
123. The electrode potential is the tendency of a n A. to gain electrons B. to lose electrons C	netal C. either to gain electrons or lose ele	ctrons D.None
124. The electrolyte used in construction of lead-a A.dil. HNO ₃ B. dil. H ₂ SO ₄ C. dil. HClD. dil KOH	cid battery is	[]
125. In the cell Zn/Zn ⁺⁺ //Cu ⁺⁺ /Cu A. Copper gets reduced C. Zinc gets oxidized and copper gets reduced	B. Zinc gets oxidized D. Copper gets oxidized	[]

Signature of Faculty

Signature of the HOD